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Abstract

The paraventricular nucleus of the thalamus (PVT) is involved in drug
addiction-related behaviors, and morphine is a widely used opioid for the relief of
severe pain. Morphine acts through opioid receptors, but the function of opioid
receptors in the PVT has not been fully elucidated. Here, we used in vitro
electrophysiology to study neuronal activity and synaptic transmission in the PVT of
male and female mice. Activation of opioid receptors suppresses the firing and
inhibitory synaptic transmission of PVT neurons in brain slices. On the other hand,
the involvement of opioid modulation is reduced after chronic morphine exposure,
probably due to desensitization and internalization of opioid receptors in the PVT.

Overall, the opioid system is essential for the modulation of PVT activities.

Key words: opioid receptor, paraventricular nucleus of the thalamus, PVT, zona

incerta, firing, synaptic transmission, chronic morphine exposure

Significance statement: Opioid receptors modulate the activities and synaptic
transmission in the PVT by suppressing the firing rate and inhibitory synaptic inputs.

These modulations were largely diminished after chronic morphine exposure.
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Introduction

The paraventricular nucleus of the thalamus (PVT) is a part of the dorsal midline
thalamus (dMT) and acts as a central hub that integrates cortical and subcortical
inputs to regulate diverse behavioral responses (Kirouac, 2015; Millan et al., 2017).
The PVT has diverse connections with many nuclei, including the hypothalamus,
hippocampus, amygdala, and prelimbic cortex, and sends large projections to other
regions involved in motivation and behavior regulation, such as the nucleus
accumbens. While the efferent projections are primarily glutamatergic, receptors for
several neuromodulators and neuropeptides can be found in the PVT neurons,
including serotonin, dopamine, norepinephrine, corticotropin-releasing hormone,
orexin, and endogenous opioids (Kirouac, 2015; Barson et al., 2020). Studies have
implicated the PVT in circadian rhythm, acute and chronic stress regulation, drug
addiction-related behavior, attention processing, and decision-making (Iglesias and
Flagel, 2021; Flagel, 2022).

Recently, the PVT has been identified as a key node in the neural circuits of drug
addiction (Zhou and Zhu, 2019; Zhou et al., 2021). The PVT can be activated by acute
exposure to cocaine, amphetamine and morphine (Deutch et al., 1998; Zhu et al.,
2016). PVT neurons projecting to the nucleus accumbens (NAc) shell are recruited
during spontaneous or naloxone-precipitated morphine withdrawal. PVT mediates
aversion and morphine-associated memories. Activation of the PVT—NAc pathway

drives aversion in morphine withdrawal-induced conditioned place aversion (CPA)



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

tests (Zhu et al., 2016; Do-Monte et al., 2017; Keyes et al., 2020). Furthermore, the
PVT—NACc pathway is both sufficient and necessary to drive aversion and heroin
seeking following abstinence but not extinction (Giannotti et al., 2021). These
findings are consistent with recent studies proposing that PVT neurons encode the
salience of behaviorally relevant stimuli (Zhu et al., 2018; Choi et al., 2019), a
proposal that suggests the PVT plays a fundamental role in behavioral control (Zhou
and Zhu, 2019).

Opioids, such as morphine, are clinically effective analgesics, but they also
induce euphoria and adaptive changes in reward circuits (Le Merrer et al., 2009).
Morphine acts through G protein-coupled opioid receptors to modulate presynaptic
and postsynaptic ion channels (Luscher and Slesinger, 2010; Nockemann et al., 2013)
and disinhibit inhibitory control to modulate pain and reward (Zhang et al., 2014,
Baimel and Borgland, 2015). Opioid receptors comprise three homologous G
protein-coupled receptors (GPCRs) known as mu- (p), delta- (8) and kappa- (k) opioid
receptors (MORs, DORs and KORs, respectively). Activation of opioid receptors
inhibits neurons by activating inwardly rectifying potassium currents (Minami and
Satoh, 1995; Brunton and Charpak, 1998; Ikeda et al., 2000), and opioid receptors are
activated by endogenous opioid peptides under physiological conditions (Darcq and
Kieffer, 2018). In addition, high expression of MOR and KOR has been found in
midline thalamic nuclei, particularly the PVT (George et al., 1994; Mansour et al.,

1994). The p-opioid system in midline thalamic nuclei may be involved in
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ameliorating aversive or defensive behavioral states associated with stress, withdrawal,
physical pain or social rejection (Goedecke et al., 2019) and indeed modulates defense
strategies against a conditioned fear stimulus in male mice (Bengoetxea et al., 2020).
Intra-PVT infusion of a KOR agonist inhibits drug-seeking behavior (Marchant et al.,
2010). KOR activation inhibits anterior PVT (aPVT) neurons in mice at different ages,
particularly around puberty, suggesting a possible role for KOR in regulating
aPVT-related brain functions, including the stress response and drug-seeking behavior,
during adolescence (Chen et al., 2015). However, to date, it remains unclear how
morphine affects the activity of PVT neurons and whether chronic morphine exposure
alters this modulation.

In this study, we used patch clamp recording to test the effects of morphine and
opioid receptor agonists on the activities of PVT neurons and synaptic inputs to the
PVT. We also examined the functions of opioid receptors in the PVT after chronic
morphine treatment. Taken together, this study illustrates the modulatory role of

opioids in the activities of PVT neurons.

Materials and Methods
Subjects

Male and female mice aged 8-12 weeks were used in the experiments. Mice were
maintained at 22-25 °C under a 12-hour light-dark cycle. All animal husbandry and

experimental procedures in this study were approved by the Animal Care and Use
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Committees at the Shenzhen Institute of Advanced Technology (SIAT), Chinese
Academy of Sciences (CAS). C57BL/6 mice were obtained from Charles River
Laboratories in Beijing and Hangzhou, China. GAD2-Cre (JAX stock number: 010802)
were used in the current study.
Drugs

APV, CNQX, picrotoxin, DAMGO, naloxone, U50488, SNC80 and Tertiapin-Q
were purchased from Tocris Bioscience.
Electrophysiological recording

Procedures to prepare acute brain slices and perform whole-cell recordings with
optogenetic stimulation were similar to those described previously (Zhu et al., 2016).
Briefly, mice were anesthetized with isoflurane and decapitated in the morning (light
cycle). Brains were rapidly dissected and coronal slices of 250-300 pm containing the
PVT were prepared using a vibratome (VT-1000S, Leica) in an ice-cold choline-based
solution containing (in mM) 110 choline chloride, 2.5 KCl, 0.5 CaCl,, 7 MgCl,, 1.3
NaH,POs, 1.3 Na-ascorbate, 0.6 Na-pyruvate, 25 glucose and 25 NaHCOs, saturated
with 95% O, and 5% CO,. Slices were incubated in 36 °C oxygenated artificial
cerebrospinal fluid (in mM: 125 NaCl, 2.5 KCl, 2 CaCl,, 1.3 MgCl,, 1.3 NaH,POy,
1.3 Na-ascorbate, 0.6 Na-pyruvate, 25 glucose and 25 NaHCOs3) for at least 1 h before
recording. Slices were transferred to a recording chamber and superfused with 2 ml
min™" artificial cerebrospinal fluid. Patch pipettes (3-6 MQ) were made of borosilicate

glass (BF150-86-10, Sutter Instruments). For recording of action potential firing, the
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pipettes were filled with a K-based internal solution containing (in mM) 130
K-gluconate, 10 KCI, 10 HEPES, 1 EGTA, 2 Mg-ATP, 0.3 Na-GTP, 2 MgCl,, 290
mOsm kg, adjusted to pH 7.3 with KOH. For the postsynaptic current recording,
pipettes were filled with a Cs-based low CI internal solution containing (in mM) 135
CsMeSOs;, 10 HEPES, 1 EGTA, 3.3 QX-314, 4 Mg-ATP, 0.3 Na-GTP, 8
Nay-phosphocreatine, 290 mOsm kg, adjusted to pH 7.3 with CsOH. In some
experiments, the APV, CNQX, TTX or picrotoxin blockers were applied by bath
perfusion. Whole-cell voltage-clamp recordings were performed at room temperature
(22-25 °C) using a Multiclamp 700B amplifier and a Digidata 1550B (Molecular
Devices). Data were sampled at 10 kHz and analyzed using pClampl10 (Molecular
Devices). For the optogenetic experiments, a blue light-emitting diode (470 nm,
Thorlabs) controlled by digital commands from the Digidata 1550B was coupled to
the microscope via a dual lamp house adaptor (5-UL180, Olympus) to deliver
photostimulation. To record light-evoked EPSCs and IPSCs, 2 ms, 0.5-2 mW blue
light was delivered through the objective to illuminate the entire field of view. The
membrane potential was held at -70 mV to record EPSCs and at 0 mV to record
GABA, receptor-mediated IPSCs. Individual sweeps were separated by 15 s. Event
analysis was performed using pClampl0 and Axograph 1.7.6 software, with a
matching threshold of 2.8 was applied to minimize false-positives.

Morphology
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The intracellular solution containing 0.1% Lucifer yellow (Sigma, L0144) was
used to inject dye into PVT neurons for whole-cell recording. After recording, the
brain slices were fixed in 4% paraformaldehyde overnight. To enhance the intensity
and persistence of the fluorescence, anti-lucifer yellow antibody (Invitrogen, A5750,
rabbit, 1:500) was used for further staining, and the secondary antibody was
conjugated with Alexa Fluor 488 (Invitrogen, A-11008, 1:500). The labelled cells
were imaged using a fluorescence microscope (Olympus, BX53).

Single-cell real-time PCR

At the end of each recording, the cytoplasm was aspirated into the patch pipette
and ejected into a PCR tube. The single-cell real-time PCR protocol was designed to
detect the presence of mRNAs encoding for opioid receptors. Preamplification and
real-time PCR were performed with gene-specific TagMan® assays (Thermo Fisher,
4453320 Mm01188089 m]1) using the Single Cell-to-CT™ kit (Invitrogen, 4458237)
according to the manufacturer’s protocol. Amplification products were visualized by
electrophoresis on a 2% agarose gel. Care was taken to minimize RNA degradation
and contamination during the single-cell real-time PCR procedures.

Stereotaxic surgery

Adult mice were anesthetized with 2% isoflurane and placed in a stereotactic
instrument (RWD, Shenzhen, China). Microinjections were performed using a
33-gauge needle connected to a 10 pl Hamilton syringe. Virus was injected into the

PVT (bregma -1.0 mm; lateral 0.3 mm; ventral 3.0 mm, with a 5° angle from the
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center to the sides) and zona incerta (bregma -1.0 mm; lateral 0.7 mm; ventral -4.4
mm). The target site was injected with 200 nl of purified and concentrated AAV (10"
IU/ml) with a slow injection rate (100 nl/min). The injection capillary was removed 5
min after the end of the injection. All mice were allowed to recover at least 3 weeks
before electrophysiological recording. Histological slides were examined blindly for
EGFP or mCherry expression. Only the mice with virus infection at the correct site
were selected for further analysis.
Immunostaining

Mice were anesthetized with pentobarbital sodium (0.8%) and perfused with 4%
paraformaldehyde. Brains were post-fixed overnight. Coronal sections of 50 pum
thickness were cut on a freezing microtome. Sections were incubated with primary
antibodies for 24 hours at 4 °C. The primary antibodies were c-Fos (Cell Signaling,
2250s, rabbit, 1:1000), NeuN (Millipore, MAB377, mouse, 1:500), and p-opioid
receptor (MOR) antibody (ImmunoStar, 24216, rabbit, 1:1000). Secondary antibodies
were conjugated to Alexa Fluor (Invitrogen, 1:500). Sections were mounted in
Fluoroshield (Sigma). Images were captured using a 63x objective on a Zeiss
LSM880 confocal microscope. Data were analyzed using Imagel.
Statistical analysis

Data are presented throughout as the mean = SEM. Unless otherwise noted, male
and female mice were used in all studies. No sex differences were observed for any of

the parameters measured and therefore data from male and female mice were pooled
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to increase statistical power. Electrophysiological data were analyzed using Student’s
t test and ANOVA test. For all statistical comparisons, differences were considered as

significant at P< 0.05. df: degrees of freedom.

Results
Opioid receptors modulate the activity of PVT neurons

To investigate the effects of opioid on the activity of PVT neurons, mice were
injected intraperitoneally (i.p.) with morphine (10 mg/kg) to induce expression of the
immediate early gene c-Fos in the brain, which is a marker of recent neuronal activity
(Zhu et al., 2016). After 90 minutes, mice were anesthetized and perfused with 4%
formaldehyde, and then frozen brains were sectioned and immunostained with
antibodies. Morphine injection increased the proportion of cells expressing c-Fos in the
PVT compared to saline injection (saline, 101.8 = 11.57 % vs. morphine, 167.5 +
13.75 %, P = 0.0016, t = 3.676, df = 19, n = 2 mice each group, unpaired t test) (Fig.
1 A,B), indicating that morphine activates PVT neurons. Morphine acts through opioid
receptors that couple to G protein-gated inwardly rectifying potassium (GIRK)
channels, inhibiting neuronal activity (Cruz et al., 2008; Kotecki et al., 2015; Rifkin et
al., 2017). High expression of opioid receptors has been reported in PVT (George et al.,
1994; Mansour et al., 1994). To investigate the functions of opioid receptors in PVT,
we performed whole-cell patch clamp recordings in brain slices. First, we recorded the

action potential firing of PVT neurons. The firing rate was significantly reduced in
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most PVT cells after application of morphine (30 uM) (ACSF, 5.06 + 0.42 Hz, n = 16
vs. morphine, 1.64 £ 0.60 Hz, n = 16 vs. morphine + naloxone, 4.27 + 0.55 Hz, n = 8.
One-way ANOVA, F( 16 = 19.63, P = 0.0002, followed by post-hoc Tukey’s test)
(Fig. 1C,E), which can be reversed by application of the opioid receptor antagonist
naloxone (10 uM). The subtype of opioid receptors involved in the regulation of PVT
neuronal activity was then determined. Three subtype agonists were used to record
firings of PVT neurons, including the MOR agonist DAMGO ([D-Ala”, N-Me-Phe’,
Gly’-ol]-enkephalin, 1 pM), the KOR agonist U50488 (1 uM), and the DOR agonist
SNC80 (3 uM). DAMGO application significantly reduced the firing rate in most PVT
cells, similar to the effect of morphine (ACSF, 5.17 £ 0.39 Hz, n = 16 vs. DAMGO,
2.33 £ 0.77 Hz, n = 16 vs. DAMGO + naloxone, 3.82 + 0.30 Hz, n = 12. One-way
ANOVA, F(1, 19y = 22.04, P < 0.0001, followed by post-hoc Tukey’s test) (Fig. 1D,F).
However, the KOR agonist U50488 and the DOR agonist SNC80 had no effect on the
firing rate of PVT neurons (ACSF, 5.92 £+ 0.54 Hz vs. U50488, 6.31 + 0.59 Hz, n = 10,
P =0.4278,t=0.83, df =9; ACSF, 6.13 £0.61 Hz vs. SNC80, 5.63 + 0.60 Hz, n = 10,
P =0.1679, t = 1.5, df = 9, paired t test) (Fig. 1G,H). These results suggest that the
MOR is important in regulating the activities of PVT neurons.

Interestingly, a few cells had no apparent response to morphine or DAMGO. To
investigate the difference between these opioid sensitive and insensitive neurons, we
first examined the morphology of PVT neurons. Lucifer yellow CH dipotassium salt

was added to the intracellular pipette solution during recording, and then brain slices
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were then immunostained with Lucifer yellow antibody to enhance the fluorescence.
However, we did not see a clear difference in the morphology between these two
groups of PVT neurons (examples are shown in Fig. 11). Second, not all PVT neurons
may express MORs. To investigate the difference in MOR expression in these two
groups, we performed single-cell real-time (RT) PCR after recording. The single-cell
RT PCR procedure is shown in Fig. 1]. Both the cells that were sensitive to DAMGO
and also the cells that showed no response to DAMGO expressed Oprm1 (the gene
encoding MOR), suggesting that MORs were widely expressed in the PVT neurons.
Since the RT-PCR revealed the expression of MORs in the PVT neurons, hence the
postsynaptic modulation, the insensitive neurons might reflect that the MORs were not
functional or there might be some presynaptic mechanism to counteract it. Previous
literature has reported that MORs could also be expressed presynaptically to regulate
firing, and that opioid receptors may be involved in regulating synaptic inputs to the

PVT.

Opioid receptors modulate inhibitory synaptic inputs to the PVT

Opioid receptors have been reported to modulate synaptic transmission, particularly
GABAergic inhibitory transmission (Fields and Margolis, 2015; Jiang et al., 2021). To
assess the effects of opioid receptors on synaptic transmission in the PVT, we first
recorded spontaneous excitatory and inhibitory postsynaptic currents (SEPSCs and

sIPSCs). Bath application of morphine (30 pM) did not alter the frequency or
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amplitude of sSEPSCs (Amplitude: ACSF, 11.09 £+ 0.72 pA vs. morphine, 10.45 + 0.56
PA, n =14, P = 0.444, t = 0.79, df = 13; Frequency: ACSF, 4.94 + 0.59 Hz vs.
morphine, 4.53 = 0.53 Hz, n = 14, P = 0.1824, t = 1.41, df = 13, paired t test) (Fig.
2A-C), but decreased the frequency and amplitude of sIPSCs (Amplitude: ACSF,
13.30 = 0.91 pA vs. morphine, 11.89 + 0.66 pA, n= 18, P =0.0078, t=3.01, df =17,
Frequency: ACSF, 4.03 + 0.90 Hz vs. morphine, 3.31 = 0.68 Hz, n =18, P =0.0133, t
= 2.76, df = 17, paired t test) (Fig. 2D-F). Thus, opioid receptors can regulate
inhibitory synaptic transmission in the PVT. To further investigate which subtype of
opioid receptors contributes to the regulation of inhibitory inputs to the PVT, we
recorded miniature IPSCs (mIPSCs) in the presence of APV (NMDA receptor
antagonist, 50 uM), CNQX (AMPA receptor antagonist, 10 pM) and TTX (sodium
channel blocker, 0.5 uM). Morphine (30 uM) also decreased the frequency and
amplitude of mIPSCs in the PVT neurons (Amplitude: ACSF, 8.32 + 0.54 pA vs.
morphine, 7.52 + 0.54 pA, n = 10, P = 0.0015, t = 4.48, df = 9; Frequency: ACSF,
2.88 £ 0.31 Hz vs. morphine, 2.34 = 0.33 Hz, n = 10, P = 0.0028, t = 4.07, df = 9,
paired t test) (Fig. 3A,B). The MOR agonist DAMGO (1 pM) significantly reduced
both the amplitude and frequency of mIPSCs in the PVT (Amplitude: ACSF, 9.57 +
0.85 pA vs. DAMGO, 8.71 £0.75 pA,n= 12, P =0.0353, t = 2.4, df = 11, Frequency:
ACSF, 2.66 = 0.38 Hz vs. DAMGO, 2.04 £ 0.41 Hz, n= 12, P = 0.0006, t = 4.73, df =
11, paired t test) (Fig. 3C,D). The KOR agonist U50488 (1 uM) also significantly

reduced the amplitude and frequency of mIPSCs in the PVT (Amplitude: ACSF, 11.48
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+ 0.75 pA vs. U50488, 10.02 + 0.64 pA, n = 12, P = 0.0005, t = 4.9, df = 11,
Frequency: ACSF, 4.35+£0.97 Hz vs. U50488, 3.11 £ 0.70 Hz,n =12, P=0.0014, t =
4.26, df = 11, paired t test) (Fig. 3E,F). There was no effect of the DOR agonist SNC80
(3 uM) on the mIPSCs (Amplitude: ACSF, 13.94 + 1.07 pA vs. SNC80, 13.42 + 1.01
pA, n =12, P = 0.0965, t = 1.82, df = 11; Frequency: ACSF, 4.95 + 0.64 Hz vs.
SNC80, 4.75 + 0.51 Hz, n = 12, P = 0.4612, t = 0.76, df = 11, paired t test) (Fig.
3G,H). These results suggest that MOR and KOR are involved in the modulation of

inhibitory synaptic inputs to the PVT.

KOR modulates inhibitory synaptic transmission from the ZI to the PVT

To explore the source of the inhibitory inputs to the PVT, we performed
retrograde tracing in transgenic mice. Cre-dependent retro-AAV-DIO-EGFP was
injected into the PVT of GAD2-Cre mice (Fig. 4A). With this tracing strategy, only
GABAergic neurons that project to the PVT are labelled with GFP. After 2-3 weeks of
infection, we sectioned the whole brains of these mice and examined the distribution of
GFP fluorescence. A few brain areas were found to have intense GFP-expressing
neurons (Fig. 4B), including the suprachiasmatic nucleus (SCN), the zona incerta (ZI)
and the dorsal raphe (DR). The ZI is an inhibitory subthalamic region with extensive
connections throughout the brain. Recent studies have demonstrated diverse functions
of the ZI in processing sensory information, regulating behavior, mediating

motivational states, and participating in neural plasticity (Wang et al., 2020).
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Projections from ZI to PVT can reliably produce rapid and substantial eating (Zhang
and van den Pol, 2017). MOR and KOR are expressed in the ZI of rats and mice
(DePaoli et al., 1994; George et al., 1994; Mansour et al., 1994; Jenab et al., 1995),
but little is known about the function of opioid receptors in the ZI-to-PVT pathway.
To test whether opioid receptors regulate GABAergic inputs from the ZI to the
PVT, ZI neurons were transduced with AAV-DIO-ChR2-mCherry (Fig. 4C), and
optogenetic experiments were performed in the PVT brain slice 3-4 weeks after
surgery. A brief pulse of blue light (470 nm, 2 ms) evoked robust inhibitory
postsynaptic currents (0IPSCs) in PVT neurons when clamped at 0 mV (Fig. 4D,
upper panel), which can be blocked by the GABA, receptor antagonist picrotoxin
(100 uM) (Fig. 4D, lower panel). Light stimulation did not evoke any detectable
EPSCs when clamped at -70 mV (Fig. 4D, upper panel). The o[PSCs were preserved
in the presence of TTX (1 uM) and 4-AP (1 mM), suggesting that the ZI to PVT input
is monosynaptic (ACSF, 339.0 = 74.10 pA vs. TTX and 4-AP, 344.2 = 54.05 pA, n
=8, P =10.8725,t=0.17, df = 7, paired t test) (Fig. 4E.F). We found that DAMGO (1
uM) had no effect on the amplitude and paired-pulse ratio (PPR) of oIPSCs from ZI
to PVT (Amplitude: ACSF, 164.7 + 34.95 pA vs. DAMGO, 185.0 +42.65 pA, n =13,
P=0.2109, t=1.32, df = 12; PPR: ACSF, 1.02 +0.08 vs. DAMGO, 1.01 £0.071,n =
13,P=0.861,t=0.18, df = 12, paired t test) (Fig. 4H,I). The KOR agonist U50488 (1
uM) significantly reduced the amplitude of oIPSCs but did not alter the PPR

(Amplitude: ACSF, 134.0 £ 21.08 pA vs. U50488, 105.3 + 20.16 pA,n =11, P =
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0.0123, t=3.05, df = 10; PPR: ACSF, 1.02 +£0.05 vs. U50488, 1.12+0.12,n= 11, P
=0.3107,t=1.07, df = 10, paired t test) (Fig. 4J,K). Thus, KOR activation suppressed
the GABAergic inputs to the PVT, suggesting that KOR can modulate the inhibitory
transmission in the ZI to PVT pathway. Surprisingly, the PPR at ZI synapses to PVT
neurons was not altered. As opioid receptors are both presynaptic- and
postsynaptic-located in the PVT, it is possible that MOR or KOR agonists act on both

the presynaptic and postsynaptic receptors and counteract the change in PPR.

Chronic morphine exposure reduced the inhibition of firing by MOR

Opioids are currently the most effective drugs for pain relief. However, they are
also rewarding, and their repeated use can lead to dependence and addiction (Fields
and Margolis, 2015). Addiction is a complex, relapsing disorder in which drugs of
abuse hijack, overstimulate and compromise reward-processing systems and
associated networks (Darcq and Kieffer, 2018). Activation of the PVT can induce
aversion and contribute to opioid withdrawal (Zhu et al., 2016). In our results, acute
morphine could modulate the activities of PVT neurons. To investigate the functions
of opioid receptors after chronic morphine treatment, mice were rendered opiate
dependent by daily i.p. injections of morphine in their home cage with doses
escalating from 10 to 50 mg per kg body weight (Zhu et al., 2016) (Fig. 5A). Control
mice were i.p. injected with the same volume of saline. On day 7, whole-cell

recording was performed in brain slices, and the activities of PVT neurons before and
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after MOR agonist application were tested. Representative recordings are shown in
the Fig. 5D and 5E. DAMGO application significantly reduced the firing rate of PVT
neurons in the saline-treated mice (ACSF, 2.91 + 0.33 Hz vs. DAMGO, 0.64 + 0.34
Hz vs. DAMGO + Naloxone, 2.53 + 0.37 Hz; n = 12. One-way ANOVA, F( 14 =
22.93, P = 0.0001, followed by post-hoc Tukey’s test) (Fig. 5B), and this effect was
largely suppressed in the morphine-treated mice (ACSF, 4.79 + 0.36 Hz vs. DAMGO,
3.66 £ 0.61 Hz vs. DAMGO + Naloxone, 4.73 £ 0.34 Hz; n = 15. One-way ANOVA,
F,18=5.998, P = 0.0184, followed by post-hoc Tukey’s test) (Fig. 5C).

As the recordings were made 2 days after the last morphine injection (Fig. 5A),
the animal could be in a state of spontaneous withdrawal. To discriminate between
desensitization effects due to morphine exposure and spontaneous withdrawal, we
performed recordings from chronic morphine exposure mice in which the brain slices
were prepared two hours after the last morphine injection on day 5 (Fig. 5F).
DAMGO did not reduce the firing rates in the morphine exposure group (ACSF, 3.03
+0.25 Hz vs. DAMGO, 2.25 + 0.44 Hz vs. DAMGO + Naloxone, 2.91 £0.22 Hz; n =
9. One-way ANOVA, F( 12y = 2.339, P = 0.1472, followed by post-hoc Tukey’s test)
(Fig. 5H). In addition, we examined the effects of DAMGO on firing when animals
were in a state of naloxone-precipitated withdrawal. Mice were i.p. injected with
naloxone (5 mg/kg) two hours after the last morphine injection, and 10 - 15 min later,
the animals were anesthetized and decapitated for preparation of brain slices (Zhu et

al.,, 2016) (Fig. 5G). DAMGO also did not reduce the firing rates in these
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naloxone-precipitated withdrawal mice (ACSF, 3.59 + 0.33 Hz vs. DAMGQO, 2.71 +
0.56 Hz vs. DAMGO + Naloxone, 3.73 £0.30 Hz; n = 6. One-way ANOVA, F( 6) =
6.134, P = 0.0466, followed by post-hoc Tukey’s test) (Fig. 5I). Furthermore, the
degree of suppression, as quantified by suppression ratios (ratios between the firing
rate in ACSF and DAMGO conditions), was similar in the morphine treatment,
morphine exposure and naloxone-precipitated withdrawal groups, and all changed less
than in the saline treatment group (saline treatment, 0.18 £ 0.09, n = 12 vs. morphine
treatment, 0.74 + 0.10, n = 15 vs. morphine exposure, 0.75 + 0.12, n = 9 vs.
naloxone-precipitated withdrawal, 0.74 = 0.13, n = 6. One-way ANOVA, F(; 14y =
7.797, P = 0.0063, followed by post-hoc Dunnett’s test) (Fig. 5J). As the reduction in
DAMGO inhibition was already present on day 5 in the morphine exposure group,
without any withdrawal effect, the reduction in firing rate on day 7 in the morphine
treatment group was more likely due to morphine exposure rather than spontaneous
opioid withdrawal.

Opioid receptors are members of the G protein-coupled receptor (GPCR) family,
and they can activate G protein-activated inwardly rectifying potassium (GIRK)
channels via G proteins. Activation of GIRK channels induces membrane
hyperpolarization of the neurons via K efflux and reduces neuronal excitability
(Tkeda et al., 2002; Rifkin et al., 2017). Since opioids act through MORs that couple
to GIRK channels, we asked whether the reduced inhibition of firing rate by DAMGO

is due to the reduced MOR coupling to GIRK after chronic morphine treatment? We
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recorded GIRK currents induced by DAMGO (3 uM) when the membrane potential
was clamped at -60 mV. DAMGO application induced robust outward GIRK currents
in saline-treated control mice (Fig. 5K, black). DAMGO application also induced
significant GIRK currents in morphine-treated and morphine-exposed mice, and the
amplitudes were similar to those in saline-treated mice (Fig. 5K,L). However,
DAMGO could not induce obvious GIRK currents in the naloxone-precipitated
withdrawal mice (saline treatment, 19.09 + 4.03 pA, n = 9 vs. morphine treatment,
22.67 £ 3.29 pA, n = 11 vs. morphine exposure, 1532 + 445 pA, n = 7 vs.
naloxone-precipitated withdrawal, 2.82 = 1.96 pA, n = 6. One-way ANOVA, F(, 1) =
4.714, P = 0.0288, followed by post-hoc Dunnett’s test) (Fig. 5K,L). Thus, the results
showed that DAMGO-induced GIRK currents were reduced in naloxone-precipitated
withdrawal mice, suggesting a decoupling of MOR and GIRK induced by
naloxone-precipitated withdrawal.

To confirm the contribution of GIRK channels to the DAMGO inhibition, we
used a GIRK channel antagonist, tertiapin-Q, to reverse DAMGO-induced inhibition
of PVT neurons. As we have shown previously, DAMGO suppressed the firing and
hyperpolarized PVT neurons (Fig. 5M). Application of tertiapin-Q (1 pM) did not
restore the action potential firing (ACSF, 3.28 = 0.33 Hz vs. DAMGO, 0.18 £0.18 Hz
vs. DAMGO + Tertiapin-Q, 0.60 + 0.56 Hz, n = 5. One-way ANOVA, F(, 5 = 27.05,
P = 0.0028, followed by post-hoc Tukey’s test) (Fig. SN), but partially reversed the

hyperpolarization of the membrane potential (ACSF, -40.29 + 1.93 mV vs. DAMGO,
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-49.27 £ 2.22 mV vs. DAMGO + Tertiapin-Q, -43.39 £ 1.11 mV, n = 5. One-way
ANOVA, F,6 = 11.82, P = 0.0118, followed by post-hoc Tukey’s test) (Fig. 50).
These results suggest that GIRK channels contribute to membrane potential
hyperpolarization, but not to the firing suppression effect of DAMGO on PVT neurons.
We didn’t see any GIRK currents induced by the KOR agonist U50488 (3 uM) (Fig.
5K, green).

Prolonged use of opioids leads to a reduction in their effectiveness, known as
tolerance, and research has been devoted to elucidating the molecular basis of
desensitization (Marie et al., 2006). The MOR mediates both presynaptic inhibition
and postsynaptic neuromodulatory effects of endogenous opioid peptides (Kieffer and
Evans, 2009; Corder et al., 2018; Darcq and Kieffer, 2018). The mechanism
underlying postsynaptic MOR desensitization is based on ligand-induced
phosphorylation of the MOR cytoplasmic tail by GPCR kinases (GRKs) followed by
receptor internalization (Gainetdinov et al., 2004; Just et al., 2013; Williams et al.,
2013; Yousuf et al., 2015; Arttamangkul et al., 2018; Jullie et al., 2020). To
investigate whether MOR is internalized in PVT neurons after chronic morphine
exposure, MOR antibody was used to show the distribution of MOR, and NeuN
antibody was used to show the soma of the neurons (Fig. 6A). Radius analysis shows
the distribution of MOR from the center to the periphery of the PVT cells (n = 8 cells
per group). In the chronic morphine treatment group, MORs were scattered in the cell

body (cytoplasm), whereas in the saline treatment group, MORs were mostly
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distributed across the periphery (membrane) (Cytoplasm area: morphine treatment,
47.67 £ 1.78 vs. saline treatment, 36.39 + 1.18, n = §; Membrane area: morphine
treatment, 45.94 + 0.43 vs. saline treatment, 67.80 + 0.73, n = 8. Two-way ANOVA
followed by post-hoc Tukey’s test; drug treatment X cellular location, F(; 5y = 181.7,
P < 0.0001; drug treatment, F(; sy = 24.9, P < 0.01; cellular location, F(; g) = 145.8, P
< 0.0001) (Fig. 6B,C). Thus, chronic morphine treatment induced the internalization
of MORs in the PVT neurons and reduced the postsynaptic neuromodulatory effects

of opioids.

Chronic morphine exposure reduced the modulation of inhibitory inputs by
MOR and KOR

Previously, we found that opioid receptors contribute to the modulation of
inhibitory inputs to the PVT in wild-type mice. Could opioid receptors still modulate
the inhibitory transmission in the PVT after chronic morphine treatment? DAMGO (1
uM) reduced the amplitude and frequency of mIPSCs in saline-treated mice
(Amplitude: ACSF, 9.01 £+ 0.82 pA vs. DAMGQO, 8.55 + 0.82 pA, n= 11, P =0.0459,
t=2.28, df = 10; Frequency: ACSF, 3.76 = 0.85 Hz vs. DAMGO, 3.52 +0.83 Hz, n =
11, P =0.006, t = 3.47, df = 10, paired t test) (Fig. 7A,C,D), consistent with what we
found in wild type mice. U50488 (1 uM) also decreased the amplitude and frequency
of mIPSCs in saline-treated mice (Amplitude: ACSF, 8.30 £ 0.44 pA vs. U50488,

7.44 £0.40 pA,n=13, P =0.0013, t = 4.19, df = 12; Frequency: ACSF, 4.01 + 0.56
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Hz vs. U50488, 3.01 = 0.44 Hz, n = 13, P = 0.0077, t = 3.19, df = 12, paired t test)
(Fig. 7B.E,F). Different from the control saline treatment group, the suppressive
effects of DAMGO on mIPSCs were diminished after chronic morphine treatment
(Amplitude: ACSF, 9.66 + 0.79 pA vs. DAMGO, 9.11 £0.66 pA, n= 12, P = 0.0794,
t=1.93, df = 11; Frequency: ACSF, 4.33 = 0.78 Hz vs. DAMGO, 3.81 £ 0.72 Hz, n =
12, P =0.0544, t = 2.15, df = 11, paired t test) (Fig. 7G.1,J). The effects of U50488 (1
uM) were also attenuated after chronic morphine treatment (Amplitude: ACSF, 8.31 +
0.86 pA vs. U50488, 8.05 + 0.80 pA, n= 12, P =0.266, t = 1.17, df = 11; Frequency:
ACSF, 2.94 + 0.56 Hz vs. U50488, 2.63 + 0.54 Hz, n = 12, P = 0.0495, t = 2.21, df =
11, paired t test) (Fig. 7H,K,L). The modulation of inhibitory inputs by MOR and
KOR were reduced in morphine-treated mice, suggesting that the involvement of
MOR and KOR in PVT was reduced after chronic morphine exposure.

Is the kappa opioid regulation of the ZI to PVT input sensitive to chronic
morphine exposure? Optically evoked IPSCs were recorded from saline or morphine
treated mice. U50488 (1 uM) reduced the amplitude of oIPSCs from ZI to PVT in the
saline treatment mice (ACSF, 255.3 + 21.94 pA vs. U50488, 205.9 + 19.36 pA,n=
20, P = 0.00007, t = 5.06, df = 19, paired t test) (Fig. 7M, left), but this effect was
reduced by chronic morphine treatment (ACSF, 108.2 + 13.85 pA vs. U50488, 103.2
+ 14.03 pA,n=19, P =0.2403, t = 1.21, df = 18, paired t test) (Fig. 7N, left). As in
wild-type mice, U50488 did not alter the paired-pulse ratio (PPR) in both

saline-treated and morphine-treated mice (Saline treatment: ACSF, 0.91 + 0.04 vs.
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U50488, 0.91 £ 0.03, n = 20, P = 0.7451, t = 0.33, df = 19; Morphine treatment:
ACSF, 1.08 + 0.12 vs. U50488, 1.19 = 0.13 ,n= 14, P = 0.196, t = 1.36, df = 13,
paired t test) (Fig. 7M,N). These results suggest that KOR is important in modulating
inhibitory input from the ZI to the PVT and that chronic morphine exposure can

disinhibit the ZI to PVT pathway.

Discussion

The PVT serves as a key node in the neural circuits that regulate addictive
behaviors. In addition to the acute effects of drugs, PVT neurons are also recruited at
different stages of the drug addiction cycle (Zhou and Zhu, 2019). In this study, we
investigated the effects of morphine and opioid receptor agonists on the activities of
PVT neurons. Bath-applied morphine and the MOR agonist DAMGO reduced the
activities of PVT neurons in brain slices. Furthermore, MOR and KOR were also
involved in modulating inhibitory inputs to the PVT. Prolonged morphine use
decreased the contribution of opioid receptors in the PVT. We did not observe any
involvement of DOR in the regulation of PVT activities. Our results showed that
MOR and KOR are essential in the regulation of PV T activities.

Neurons in the PVT are primarily glutamatergic and receive GABAergic inputs
from other nuclei, such as the ZI. We found that KOR can regulate the inhibitory
projection from the ZI to the PVT. The ZI is also an integrative node for behavioral

modulation and an inhibitory subthalamic region connecting with many brain areas
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(Wang et al., 2020). Recently, different action sequences based on the motivational
level of novelty seeking have been revealed, and a circuit underlying curiosity and
novelty-seeking behavior requires a subpopulation of medial ZI neurons (Ahmadlou
et al., 2021). PVT neurons encode multiple salient features of sensory stimuli,
including reward, aversion and novelty, and weigh the valence between the positive
and negative information (Zhu et al., 2018). We found that activation of opioid
receptors in the terminals of ZI neurons reduced the inhibitory inputs to the PVT,
which could disinhibit the activities of PVT neurons. Thus, the ZI to the PVT pathway
may be important for motivational behavior, and the opioid system in this pathway
may influence behavioral responses to dynamic environmental contexts.

Opioid receptors are members of the G protein-coupled receptor (GPCR) family,
and they can activate G protein-activated inwardly rectifying potassium (GIRK)
channels via G proteins. Activation of GIRK channels induces membrane
hyperpolarization of the neurons via K' efflux and reduces neuronal excitability
(Ikeda et al., 2002; Rifkin et al., 2017). We applied the MOR agonist DAMGO and the
GIRK channel antagonist tertiapin-Q to brain slices. DAMGO application decreased
the firing rate and hyperpolarized the membrane potential of PVT neurons. Tertiapin-Q
reversed the hyperpolarization induced by DAMGO, but failed to restore the firing in
most of the cells. We therefore proposed that activation of GIRK channels is the
underlying mechanism for membrane potential hyperpolarization, but other

mechanisms such as a decrease in calcium conductance may contribute to the reduction
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in firing rate upon MOR activation (Borgland, 2001), which require future
investigation.

Chronic morphine exposure induces adaptive phenomena such as tolerance and
dependence. In tolerance, more morphine is required to achieve the initial effect,
whereas dependence is manifested by the withdrawal syndrome induced by cessation
of morphine exposure (Cruz et al., 2008). To distinguish between the effects of
morphine tolerance and withdrawal, we compared the results between the morphine
exposure group and the naloxone-precipitated withdrawal group. As in the morphine
treatment group (2 days after the last morphine injection), the decrease in firing rate
induced by DAMGO was dramatically attenuated in both the morphine exposure and
naloxone-precipitated withdrawal groups. Thus, these results suggest that, the reduced
inhibition of firing rate by DAMGO is due to chronic morphine exposure rather than
spontaneous withdrawal.

We also found that DAMGO was able to induce robust GIRK currents with
similar amplitudes in the saline-treated, morphine-treated and morphine-exposed mice.
MOR coupling to GIRKs was not desensitized by chronic treatment, suggesting that
other intracellular downstream effectors such as adenylyl cyclase, voltage-gated Ca®**
channels and others (Williams et al., 2001) play more important roles in MOR
desensitization. However, DAMGO failed to evoke any apparent outward currents in
the naloxone-precipitated withdrawal mice, suggesting that the coupling of MOR to

GIRK channels was reduced in these mice. This result indicates that naloxone induces
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uncoupling of MORs and GIRKs. Naloxone might suppress functional GIRK
channels, probably through a compensatory mechanism involving internalization and
phosphorylation of GIRK channels (Hearing et al., 2013). These results were also
consistent with previous report highlighting the importance of GIRK in the
naloxone-precipitated morphine withdrawal (Cruz et al., 2008).

Desensitization of opioid receptors is thought to be required for tolerance and
involves phosphorylation by kinases and uncoupling from G-proteins realized by
arrestins (Marie et al., 2006). Internalization or endocytosis of GPCRs is another
common way to regulate their activity by removing active receptors from the cell
surface into the intracellular space. GPCR internalization is mediated by
clathrin-coated pits, caveolae and uncoated vesicles (Claing et al., 2002). Opioid
receptors rapidly diffuse across the axon surface and internalize specifically at
presynaptic terminals following ligand-induced activation (Jullie et al., 2020). In this
study, the effects of opioid receptor agonists on the excitability and inhibitory inputs
of PVT neurons were attenuated after chronic morphine exposure. These results may
be due to desensitization and internalization of opioid receptors. The diminished
effects of firing could also be caused by possible changes in opioid regulation of
presynaptic inputs, as our recordings were made in the absence of synaptic blockers.

A previous study demonstrated a morphine-induced increase in the firing rate of
PVT neurons, which was only observed during the light cycle, but not the dark cycle

(McDevitt and Graziane, 2019). This study compared the firing rate between the
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saline-treated and morphine-treated mice, which reflects contributions from several
factors including synaptic inputs, intrinsic excitability, opioid and other
neuromodulation. We did the recording during the light cycle, but the differences
were that we applied opioid agonists and antagonists in the brain slices, directly probe
the function of opioid receptors in the PVT. Our study also revealed the changes in
opioid modulation of PVT activities induced by chronic morphine treatment.
Together, MOR and KOR contribute to the modulation of PVT activities and
inhibitory synaptic inputs, and these effects can be reduced by chronic morphine

exposure.
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Figure Legends

Figure 1. Morphine and the MOR agonist DAMGO reduce the firing rate of
PVT neurons in brain slices.

A, Immunostaining images showing that saline and morphine i.p. injections induced
robust expression of c-Fos (green) in the PVT neurons (n = 2 mice per group). PVT
areas are shown in yellow boxes. Scale bar: 500 um.

B, Normalized density of PVT projection neurons expressing c-Fos. Morphine i.p.
injection (blue bar, n = 2 mice) induced more c-Fos positive (c-Fos”) cells in the PVT,
compared to saline i.p. injection (gray bar, n = 2 mice) (saline, 101.8 + 11.57 % vs.
morphine, 167.5 + 13.75 %, P=10.0016, t = 3.676, df = 19, unpaired t test).

C, Representative recording showing that morphine (30 uM) reduced action potential
firing in the PVT, and that the opioid receptor antagonist naloxone (10 pM) reversed
this effect.

D, Representative recording showing that the MOR agonist DAMGO (1 uM) reduced
action potential firing in the PVT, and the opioid receptor antagonist naloxone (10 uM)
reversed this effect.

E, Morphine (30 uM) significantly decreased the firing rate of most PVT neurons
(ACSF, 5.06 + 0.42 Hz, n = 16 vs. morphine, 1.64 = 0.60 Hz, n = 16 vs. morphine +
naloxone, 4.27 + 0.55 Hz, n = 8. One-way ANOVA, F(;, 15y = 19.63, P = 0.0002,

followed by post-hoc Tukey’s test). Naloxone was not applied to all the cells.
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F, The MOR agonist DAMGO (1 uM) also significantly decreased the firing rate of
most PVT neurons (ACSF, 5.17 £ 0.39 Hz, n = 16 vs. DAMGO, 2.33 £0.77 Hz, n =
16 vs. DAMGO + naloxone, 3.82 + 0.30 Hz, n = 12. One-way ANOVA, F( 9, =
22.04, P < 0.0001, followed by post-hoc Tukey’s test). Naloxone was not applied to
all the cells.

G, The KOR agonist U50488 (1 uM) didn’t change the firing rate of PVT neurons
(ACSF, 5.92 £ 0.54 Hz vs. U50488, 6.31 £ 0.59 Hz, n = 10, P = 0.4278, t = 0.83, df =
9, paired t test).

H, DOR agonist SNC80 (3 uM) did not change the firing rate of PVT neurons (ACSF,
6.13+0.61 Hz vs. 5.63 £0.60 Hz,n =10, P =0.1679, t = 1.5, df = 9, paired t test).

I, Examples of PVT neuron morphology with Lucifer yellow staining. Scale bar: 50
pm.

J, Schematic of single-cell real-time PCR to test the gene oprml expression of the
p-opioid receptor in the PVT. GAPDH was used as an internal control.

*P <0.05, **P < 0.01, ***P < 0.001, N.S.: nonsignificance.
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Figure 2. Effects of morphine on spontaneous excitatory and inhibitory inputs to
PVT neurons.

A, Example traces showing spontaneous excitatory postsynaptic currents (EPSCs)
before (black) and after (red) morphine (30 uM) application in brain slices.

B and C, No differences were found in the amplitude and frequency of spontaneous
EPSCs before and after morphine (30 uM) application (Amplitude: ACSF, 11.09 +
0.72 pA vs. morphine, 10.45 + 0.56 pA, n = 14, P = 0.444, t = 0.79, df = 13;
Frequency: ACSF, 4.94 + 0.59 vs. morphine, 4.53 £ 0.53 Hz, n= 14, P =0.1824, t =
1.41, df = 13, paired t test).

D, Example traces showing spontaneous inhibitory postsynaptic currents (IPSCs)
before (black) and after (blue) morphine (30 M) application in brain slices.

E and F, Morphine (30 uM) reduced the amplitude and frequency of spontaneous
IPSCs (Amplitude: ACSF, 13.30 = 0.91 pA vs. morphine, 11.89 £ 0.66 pA, n =18, P
=0.0078, t =3.01, df = 17; Frequency: ACSF, 4.03 + 0.90 vs. morphine, 3.31 £ 0.68
Hz,n=18,P=0.0133, t=2.76, df = 17, paired t test).

*P <0.05, **P < 0.01, N.S.: nonsignificance.
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Figure 3. Activation of opioid receptors reduces the inhibitory transmission of
PVT neurons.

A, Example traces showing the miniature inhibitory postsynaptic currents (mIPSCs)
before (black) and after (blue) morphine (30 uM) application. mIPSCs were recorded
in the presence of APV (50 uM), CNQX (10 uM) and TTX (0.5 uM).

B, Morphine (30 uM) reduced the amplitude (left) and frequency (right) of mIPSCs
(Amplitude: ACSF, 8.32 + 0.54 pA vs. morphine, 7.52 = 0.54 pA, n= 10, P = 0.0015,
t =4.48, df = 9; Frequency: ACSF, 2.88 = 0.31 Hz vs. morphine, 2.34 + 0.33 Hz, n =
10, P=0.0028, t =4.07, df = 9, paired t test).

C, Example traces showing the mIPSCs before (black) and after (red) the application
of the MOR agonist DAMGO (1 pM).

D, DAMGO (1 pM) reduced the amplitude (left) and frequency (right) of mIPSCs
(Amplitude: ACSF, 9.57 + 0.85 pA vs. DAMGO, 8.71 £ 0.75 pA, n =12, P = 0.0353,
t=2.4, df = 11; Frequency: ACSF, 2.66 + 0.38 Hz vs. DAMGO, 2.04 £ 0.41 Hz, n =
12, P=0.0006, t =4.73, df = 11, paired t test).

E, Example traces showing the mIPSCs before (black) and after (green) application of
the KOR agonist U50488 (1 uM).

F, U50488 (1 uM) also reduced the amplitude (left) and frequency (right) of mIPSCs
(Amplitude: ACSF, 11.48 £ 0.75 pA vs. U50488, 10.02 = 0.64 pA, n= 12, P = 0.0005,
t=4.9, df = 11; Frequency: ACSF, 4.35 £+ 0.97 Hz vs. U50488, 3.11 £ 0.70 Hz, n =

12,P=0.0014, t =4.26, df = 11, paired t test).
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G, Example traces showing the mIPSCs before (black) and after (purple) application
of the DOR agonist SNC80 (3 uM).

H, No differences were found after SNC80 (3 pM) application (Amplitude: ACSF,
13.94 £ 1.07 pA vs. SNC80, 13.42 + 1.01 pA, n =12, P =0.0965, t = 1.82, df = 11;
Frequency: ACSF, 4.95 £ 0.64 Hz vs. SNC80, 4.75 + 0.51 Hz,n=12, P =0.4612,t =
0.76, df = 11, paired t test).

*P <0.05, **P < 0.01, ***P < 0.001, N.S.: nonsignificance.
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Figure 4. The KOR agonist U50488 reduces inhibitory synaptic transmission
from the ZI to the PVT.

A, Schematic illustration of the viral approach for retrograde tracing used in
GAD?2-Cre transgenic mice.

B, Representative image of retrograde tracing and EGFP expression in the upstream
regions (green). Scale bar: 2 mm (upper panels), 500 um (lower panels). SCN:
suprachiasmatic nucleus, ZI: zona incerta, cRt: caudal reticular thalamus, DR: dorsal
raphe.

C, Schematic illustration of the optogenetic approach used to test synaptic
transmission from the ZI to the PVT.

D, Example traces of optically evoked IPSCs (oIPSCs) induced by a single light pulse
(470 nm, 2 ms), and PVT neurons recorded when holding approximately 0 mV. No
current was evoked when held at -70 mV (upper). These oIPSCs could be blocked by
the GABA4 receptor antagonist picrotoxin (100 uM) (lower).

E, Example traces of oIPSCs induced by a single light pulse (470 nm, 2 ms) before
(upper) and after (lower) TTX (1 pM) and 4-AP (1 mM) application.

F, The amplitude of oIPSCs is not changed by TTX (1 uM) and 4-AP (1 mM) in PVT
neurons (ACSF, 339.0 +74.10 pA vs. TTX + 4-AP, 3442 +54.05 pA,n =8, P =
0.8725,t=0.17, df = 7, paired t test).

G, Example traces showing the o[PSCs before and after DAMGO (1 pM) (upper) and

U50488 (1 uM) application (lower).
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H and I, The amplitude and paired-pulse ratio (PPR) of oIPSCs were not different
before and after DAMGO (1 uM) application (Amplitude: ACSF, 164.7 + 34.95 pA
vs. DAMGO, 185.0 +42.65 pA, n= 13, P =0.2109, t = 1.32, df = 12; PPR: ACSF,
1.02 = 0.08 vs. DAMGO, 1.01 + 0.071, n =13, P = 0.861, t = 0.18, df = 12, paired t
test). The PPR was elicited by two consecutive light pulses (470 nm, 2 ms) with an
interval of 100 ms.

J and K, The amplitude of oIPSCs was reduced after U50488 (1 uM) application, but
there was no difference for the paired-pulse ratio (Amplitude: ACSF, 134.0 = 21.08
pA vs. U50488, 105.3 £ 20.16 pA,n=11, P =0.0123, t=3.05, df = 10; PPR: ACSF,
1.02 £0.05 vs. U50488, 1.12+£0.12, n = 11, P = 0.3107, t = 1.07, df = 10, paired t
test).

*P < 0.05, N.S.: nonsignificance.
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Figure 5. Chronic morphine treatment attenuates the inhibitory effects of
DAMGO on the firing rate of PVT neurons, which is partly mediated by GIRK
channels.

A, Experimental schedule for chronic morphine treatment: morphine i.p. injection for
5 consecutive days with a concentration gradient. Patch clamp recording on day 7.

B, Action potential firings were recorded in the PVT after chronic saline treatment,
and DAMGO (1 puM) significantly reduced the firing rate in saline-treated mice
(ACSF, 2.91 + 0.33 Hz vs. DAMGO, 0.64 + 0.34 Hz vs. DAMGO + Naloxone, 2.53 +
0.37 Hz; n = 12. One-way ANOVA, F, 14 = 22.93, P =0.0001, followed by post-hoc
Tukey’s test).

C, Action potential firings were recorded in the PVT after chronic morphine treatment,
and the reduction in firing rate was attenuated compared to that in saline-treated mice
(ACSF, 4.79 £ 0.36 Hz vs. DAMGO, 3.66 + 0.61 Hz vs. DAMGO + Naloxone, 4.73 +
0.34 Hz; n = 15. One-way ANOVA, F(; 15y = 5.998, P = 0.0184, followed by post-hoc
Tukey’s test).

D, Representative recording showing that DAMGO (1 uM) reduced action potential
firing in the PVT of the saline-treated mice, and that naloxone (10 uM) reversed this
effect.

E, Representative recording showing that DAMGO (1 puM) could not significantly

reduce firing in the morphine-treated mice.
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F, Experimental schedule for morphine exposure: morphine i.p. injection for 5
consecutive days with a concentration gradient. Two hours after the injection on day 5,
the mouse was anesthetized and decapitated for preparation of brain slices.

G, Experimental schedule for naloxone-precipitated withdrawal: morphine i.p.
injection for 5 consecutive days with a concentration gradient. Two hours after the
injection on day 5, the mouse was i.p. injected with naloxone (5 mg/kg). 10-15 min
later, the mouse was anesthetized and decapitated for preparation of brain slices.

H, Action potential firings were recorded in the PVT of morphine exposed mice.
DAMGO (1 uM) did not significantly reduce the firing rates (ACSF, 3.03 £ 0.25 Hz
vs. DAMGO, 2.25 + 0.44 Hz vs. DAMGO + Naloxone, 2.91 +0.22 Hz; n = 9.
One-way ANOVA, F(;, 12)=2.339, P = 0.1472, followed by post-hoc Tukey’s test).

I, Action potential firings were recorded in the PVT of naloxone-precipitated
withdrawal mice. DAMGO (1 pM) could not significantly reduce the firing rates,
which is similar to that in morphine-treated mice (ACSF, 3.59 + 0.33 Hz vs. DAMGO,
2.71 £ 0.56 Hz vs. DAMGO + Naloxone, 3.73 £0.30 Hz; n = 6. One-way ANOVA,
Fq,6=6.134, P = 0.0466, followed by post-hoc Tukey’s test).

J, Suppression ratio for firing in the saline-treated, morphine-treated, morphine
exposure and naloxone-precipitated withdrawal groups. Percentage of change in the
firing rate was calculated by dividing the data in drug divided by that in ACSF (saline
treatment, 0.18 £ 0.09, n = 12 vs. morphine treatment, 0.74 = 0.10, n = 15 vs.

morphine exposure, 0.75 £ 0.12, n = 9 vs. naloxone-precipitated withdrawal, 0.74 +
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0.13, n = 6. One-way ANOVA, F(3 14 = 7.797, P = 0.0063, followed by post-hoc
Dunnett’s test).

K, Example traces of GIRK currents induced by DAMGO (3 uM) in the saline-treated
mice (black), morphine-treated mice (red), morphine-exposed mice (blue) and
naloxone-precipitated withdrawal mice (orange). U50488 (3 uM) could not induce
GIRK currents in the saline-treated mice (green).

L, There was no difference in the GIRK currents between the saline-treated and
morphine-treated mice, and no difference between the saline-treated and
morphine-exposed mice. The GIRK currents were much smaller in the
naloxone-precipitated withdrawal mice than that in the saline-treated mice (saline
treatment, 19.09 + 4.03 pA, n =9 vs. morphine treatment, 22.67 £ 3.29 pA, n=11 vs.
morphine exposure, 15.32 £ 4.45 pA, n = 7 vs. naloxone-precipitated withdrawal,
2.82 + 1.96 pA, n = 6. One-way ANOVA, F», 1) = 4.714, P = 0.0288, followed by
post-hoc Dunnett’s test).

M, Example recording showing that DAMGO (1 uM) hyperpolarized the membrane
potential and abolished firing, but the GIRK channel antagonist tertiapin-Q (1 uM)
could not fully reverse this effect in wild-type mice.

N, Tertiapin-Q (1 uM) could not reverse the firing rates (ACSF, 3.28 + 0.33 Hz vs.
DAMGO, 0.18 + 0.18 Hz vs. DAMGO + Tertiapin-Q, 0.60 + 0.56 Hz, n = 5.

One-way ANOVA, F(;, 5y=27.05, P = 0.0028, followed by post-hoc Tukey’s test).
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0, DAMGO (1 uM) significantly decreased the membrane potential, but the GIRK
channel antagonist Tertiapin-Q (1 M) could not fully reverse it (ACSF, -40.29 + 1.93
mV vs. DAMGO, -49.27 £2.22 mV vs. DAMGO + Tertiapin-Q, -43.39 + 1.11 mV, n
= 5. One-way ANOVA, F( ¢ = 11.82, P = 0.0118, followed by post-hoc Tukey’s

test).

*P <0.05, **P < 0.01, ***P <0.001, N.S.: nonsignificance.
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Figure 6. Chronic morphine exposure causes MOR internalization.

A, Confocal images showing the distribution of MOR (red) in the cell bodies of the
PVT after chronic saline and morphine treatment. NeuN antibody was used to
visualize the cell body (green). Scale bar: 5 um.

B, Radius analysis showing the distribution of MOR from the center to the periphery
of the PVT cells (n = 8 per group). MORs were scattered in the cell body (cytoplasm)
in the chronic morphine group (red line), and MORs were mostly distributed in the
periphery (membrane) in the saline group (black line).

C, Quantification analysis shows that more MORs were distributed in the cytoplasm
in the PVT cells of morphine-treated mice, corresponding to the blue box in B
(morphine treatment, 47.67 + 1.78 vs. saline treatment, 36.39 + 1.18, n = §). More
MORs were distributed in the membrane area in the PVT cells of saline-treated mice,
corresponding to the green box in B (morphine treatment, 45.94 + 0.43 vs. saline
treatment, 67.80 = 0.73, n = 8). Two-way ANOVA followed by post-hoc Tukey’s test;
drug treatment X cellular location, F 5y = 181.7, P < 0.0001; drug treatment, F( g)

=249, P <0.01; cellular location, F 3y = 145.8, P <0.0001. ****P<(0.0001.
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Figure 7. Chronic morphine exposure attenuates the suppressive effects of MOR
and KOR agonists on inhibitory inputs to PVT neurons, and also reduces the
kappa opioid regulation in the ZI to PVT pathway.

A, Example traces showing the mIPSCs before (black) and after (blue) the application
of the MOR agonist DAMGO (1 uM) in the saline-treated mice.

B, Example traces showing the mIPSCs before (black) and after (green) KOR agonist
U50488 (1 uM) application in the saline-treated mice.

C and D, DAMGO (1 pM) reduced the amplitude and frequency of mIPSCs in
saline-treated mice (Amplitude: ACSF, 9.01 £ 0.82 pA vs. DAMGO, 8.55 £ 0.82 pA,
n=11,P=0.0459, t = 2.28, df = 10; Frequency: ACSF, 3.76 £ 0.85 Hz vs. DAMGO,
3.52+0.83 Hz,n=11, P=0.006, t = 3.47, df = 10, paired t test).

E and F, U50488 (1 pM) reduced the amplitude and frequency of mIPSCs in
saline-treated mice (Amplitude: ACSF, 8.30 + 0.44 pA vs. U50488, 7.44 £ 0.40 pA, n
=13, P =0.0013, t = 4.19, df = 12; Frequency: ACSF, 4.01 + 0.56 Hz vs. U50488,
3.01 +0.44 Hz,n=13,P=0.0077, t = 3.19, df = 12, paired t test).

G, Example traces showing the mIPSCs before (black) and after (red) DAMGO (1
uM) application in the morphine-treated mice.

H, Example traces showing the mIPSCs before (black) and after (purple) U50488 (1
uM) application in the morphine-treated mice.

1 and J, DAMGO (1 uM) failed to alter the amplitude and frequency of mIPSCs after

chronic morphine treatment (Amplitude: ACSF, 9.66 + 0.79 pA vs. DAMGO, 9.11 +
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0.66 pA,n =12, P =0.0794, t = 1.93, df = 11; Frequency: ACSF, 4.33 + 0.78 Hz vs.
DAMGQO, 3.81 £0.72 Hz,n = 12, P = 0.0544, t = 2.15, df = 11, paired t test).

K and L, U50488 (1 uM) could not change the amplitude of mIPSCs after chronic
morphine treatment (ACSF, 8.31 + 0.86 pA vs. U50488, 8.05 £ 0.80 pA,n=12, P =
0.266, t = 1.17, df = 11, paired t test). U50488 (1 uM) reduced the frequency of
mIPSCs (ACSF, 2.94 + 0.56 Hz vs. U50488, 2.63 + 0.54 Hz, n = 12, P = 0.0495, t =
2.21, df = 11, paired t test), but the effects were attenuated in morphine-treated mice
compared to saline-treated mice.

M, The amplitude of oIPSCs was reduced after U50488 (1 uM) application in the
saline-treated mice, but the paired-pulse ratio did not change (Amplitude: ACSF,
255.3 £ 21.94 pA vs. U50488, 205.9 + 19.36 pA, n =20, P =0.00007, t = 5.06, df =
19; PPR: ACSF, 0.91 + 0.04 pA vs. U50488,0.91 + 0.03 pA,n=20,P=0.7451,t=
0.33, df = 19, paired t test).

N, The amplitude and the paired-pulse ratio (PPR) of oIPSCs didn’t change after
U50488 (1 uM) application in the morphine-treated mice (Amplitude: ACSF, 108.2 +
13.85 pA vs. U50488, 103.2 + 14.03 pA, n =19, P =0.2403,t=1.21, df = 18; PPR:
ACSF, 1.08 £ 0.12 pA vs. U50488,1.19 + 0.13 pA,n=14,P =0.196, t = 1.36, df =
13, paired t test).

*P <0.05, **P < 0.01, ****P <0.0001, N.S.: nonsignificance.
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